
BoxSizerFromTheGroundUp 

BoxSizerFromTheGroundUp/ControlsPadding 

BoxSizerFromTheGroundUp/ControlsResizing 

BoxSizerFromTheGroundUp/NestedBoxSizers 

BoxSizerFromTheGroundUp/DivideAndConquer 

The wx.BoxSizer
Learning the necessary details to effectively use the wx.BoxSizer has caused 
excessive and needless frustration for many people, including myself. This is solely 
due to the lack of complete documentation. There are countless "tutorials" [sic] and 
demo apps, but none fully document and fully explain all the various argument 
flags. This is exacerbated by the actual design implementation of the sizer which 
requires logically ORing together unrelated flag= constants that have very unrelated 
effects. I can only guess that the BoxSizer must have been "designed by 
committee" rather than in the manner that the vast majority of the huge number of 
functions and classes that make up the core of wxPython. ** I think it's best not to 
make critical remarks. **

Sizers are wx.Control auto-positioning ** geometry management is what they are. 
that term is common in tcl/tk ** algorithms. The BoxSizer is the most a basic sizer 
and probably the most used. It is not difficult to use once the meanings of all its flags 
are understood. Understanding the BoxSizer will go a long way toward knowing 
how to use the other more complex sizers. This sizer is deceptively intricate, whereas 
the seeming more complex sizers are actually more straightforward to use (although, 
more difficult to maintain). 

** This next bit about 'stack' I don't agree with. I find pack is much better as stack 
makes me think things are being placed on top of each other as opposed to being 
side by side all visible, of course, I have some experience with tcl/tk's pack geometry 
manager which is very similar to the boxsizer. I think you should simply say the added 
widgets are 'sequenced' or 'packed' along the major axis per the flags. Lose the 
opinions and editorializing or you'll scare new people off. **

As ubiquitous as the BoxSizer may be, it is poorly named. A much better one 

would be "StackSizer". The BoxSizer does actually stack (sequence along 
one axis) wx controls in either the vertical or horizontal direction, from top-to-bottom 
or left to-right, respectively. When instantiating a BoxSizer, it's its "major" axis 
must be declared to be either the wx.VERTICAL or wx.HORIZONTAL. This is the 

http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/StackSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/DivideAndConquer
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/NestedBoxSizers
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/ControlsResizing
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/ControlsPadding


axis on which controls will be stacked. A seemingly magical trait of all sizers, in 
general, is that they auto-arrange their controls whenever the page is resized. 
Instantiating a BoxSizer takes the general form: 

Note: Square brackets, [ ], in the code boxes indicate optional arguments; curly 
brackets, { }, indicate the associated argument values.            ** needs to be before 
first use **

{ bxSzrName } = wx.BoxSizer( wx.VERTICAL orientation )        # There are 
no other parameters. Especially not a parent !

Controls of any type can be positioned by the sizer using the .Add() method so that 
their absolute positions can be automatically controlled. The general syntax to Add() 
a control is: 

{bxSzrName}.Add( { a control name, a sizer spacer or any other sizer 
                   a widget name, a sizer name, a wx.Size object or 
(width, height) tuple },
                            [ proportion=]{ a positive integer },
                            [ flag=]{ a logical "OR" phrase of border 
padding and minor axis positioning flags },
                            [ border=]{ a positive integer pixel quantity 
of spacing } )

** the wx doc shows only 'item' as the first arg and all the variations 
were not easily discovered. So say it for all to understand. 'control' 
doesn't tell me that a StaticText can go there. 'sizer spacer', what's 
that? And I think 'sizer name' is actually a sizeritem which the docs are 
unclear on.**

The square brackets, [ ], in the pseudocode snippet above indicate optional 
arguments. The curly brackets, { }, indicate the associated argument values. Even 
though the last three argument parameters are optional, it's likely that an optional 
parameter is needed for some controls to result in a reasonably acceptable 
appearance. 

Here's the first task - lay out a Frame so it looks like this: 

• . .  

http://wiki.wxpython.org/BoxSizer


This wx.Frame will consist of just a wx.StaticText and a wx.TextCtrl. The 
most important positioning requirements are: 

• The StaticText is used as the caption centered immediately over top the 

TextCtrl. 
• Both controls are centered horizontally within the "page" (i.e., the Frame's 

client area). 

• Both controls have equal spacing to the edges of the client area for both axes. 

My term page is used here to describe any kind of wx container control such as a 
wx.Frame, a wx.Window, a wx.Panel, a wx.Dialog, a notebook tab, etc., etc. Any 
wx control that can hold another control is a container by definition and can have a 
sizer position its child controls. In general, if a sizer is used within a container control, 
then all the child controls should be positioned by the sizer. This is not a requirement, 
but if a child control is not positioned by the sizer it may end up be a "rogue" control 
that misbehaves when the page is resized either by the user or programmatically. 

Nearly all [Ed.: all ? ] controls are subclassed (derived from) the wx.Window, and 
so, they normally retain most of the wx.Window class methods and class variables. 
Consider that a wx.Button looks just like a wx.Window loaded with a wx.Bitmap 
which changes its bitmap when it is left-clicked. A wx.Frame looks just like a 
wx.Window with a toolbar at the top and with a border that is an active control 
(actually a composite of individual edge + corner controls) that allows the window to 
be resized by the user. 

A wx.Panel is a wx.Window without any visible border and controls at all ! That's 
why sizers can be implemented inside any container and not just wx.Frames and 
wx.Windows. It might be said, "All in the world is a window". A wx.Window in the wx 
world, that is. 

** The above 3 paragraphs are welcome but I think would be better placed at the top 
as 'background' or 'widget basics'. They're somewhat out of place here. If you already 
know this stuff they're in the way. If you don't already know it you need it earlier. **

The code to create the two controls (i.e., instantiate wxPython control objects), create 
a BoxSizer and then have that sizer locate their positions is as follows: 

   1         # The caption wx.StaticText will be placed directly above a 
wx.TextCtrl.
   2         # Note that no "pos=" positioning parameter is needed 
because the BoxSizer
   3         # will determine its positioning.
   4         # Even if a position would be given it would be ignored and 
overridden by the sizer.
   5         #

http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/TextCtrl
http://wiki.wxpython.org/StaticText
http://wiki.wxpython.org/TextCtrl
http://wiki.wxpython.org/StaticText


   6         caption_stTxt = wx.StaticText( self, -1, 'My TextCtrl 
Caption' )
   7         self.listing_txtCtrl = wx.TextCtrl( self, -1, 
style=wx.TE_MULTILINE, size=(200, 150) )
   8 
   9         allCtrls_vertSizer = wx.BoxSizer( wx.VERTICAL )
  10 
  11         allCtrls_vertSizer.Add( caption_stTxt,        proportion=0 )
  12         allCtrls_vertSizer.Add( self.listing_txtCtrl, proportion=0 )
  13 
  14         self.SetSizer( allCtrls_vertSizer )
  15         self.Layout()                                      # 
self.Fit()           # use one or the other

•  

The sizer has the control properly "stacked" in the wx.VERTICAL direction.The next 
most important rearrangement is to position the two controls in the horizontal center 
of the Frame client. To do this the flag= parameter will be used. 

The flag= Argument

The flag= argument gives additional instructions for how the BoxSizer should 
place controls on the page both relative to the other controls in the sizer as well as in 
reference to the page client area's four edges. The predefined wx flag value 
constants affect three nearly independent groups of placement and control size 
properties. 

Minor Axis Positioning flags

If a BoxSizer is declared wx.VERTICAL then one of the flags wx.ALIGN_LEFT 
or wx.ALIGN_RIGHT can be used to "push" the control in that direction of the 
BoxSizer's minor axis. Likewise, a wx.HORIZONTAL BoxSizer can be 
given the wx.ALIGN_TOP or wx.ALIGN_BOTTOM minor axis positioning flags. The 
wx.ALIGN_CENTER flag will simply center the control no matter what what is the 
major axis. Note that any combination of any major axis positioning flags will be 

http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer


silently ignored because they have no meaning in relation to the major axis. ** This 
last sentence is unclear. I know what it means but it both says too much and not 
enough. **

wx.ALIGN_LEFT # BoxSizer major axis must be wx.VERTICAL or this will be 
ignored. 

wx.ALIGN_RIGHT # For a wx.VERTICAL BoxSizer, only. 

wx.ALIGN_TOP # For a wx.HORIZONTAL BoxSizer, only. 

wx.ALIGN_BOTTOM # For a wx.HORIZONTAL BoxSizer, only. 

wx.CENTER = wx.CENTRE = ALIGN_CENTER = wx.ALIGN_CENTRE # For both 
axis orientations. 

wx.CENTER_VERTICAL # No definition for this is available. ** it's a tutorial, make 
something up! **

wx.CENTER_HORIZONTAL # No definition for this is available. 

The two sizer .Add() statements are modified to center the controls like this: 

        allCtrls_vertSizer.Add( cap_stTxt, 
flag=wx.ALIGN_CENTER )
        allCtrls_vertSizer.Add( self.myListing_txtCtrl, 
flag=wx.ALIGN_CENTER )

The complete demo program is here: 

SIMPLE_SINGLE_SIZER_2_A.PY 

•  

That's better.All that's left to be done is to add some space between the controls and 
the frame client's to edge. There are two ways to put spacing on an edge of a control: 

http://wiki.wxpython.org/BoxSizerFromTheGroundUp?action=AttachFile&do=view&target=SIMPLE_SINGLE_SIZER_2_A.PY
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/BoxSizer


1) Include a flag= argument such as wx.Top constant in the .Add() statement as well 
as the associated border= pixel integer value. 

2) Directly use one of three kinds of BoxSizer "spacers" just before .Add()ing the 

StaticText. 
Style 2) is much easier to read and use. Style 1) will be covered later in this tutorial. 

a) sizerName.AddSpacer( {int} wx.Size ) This inserts a square space of {int} by 
{int} dimensions. 

b) sizerName.Add( (w, h) ) This inserts a rectangular space of (w, h) dimensions. 

c) sizerName.AddStretchSpacer( [prop=]{int} ) 

This inserts a one-dimensional spacer that is extends only along the sizer's major 
axis. This spacer has the property of expanding to the limit of what room there is left 
along the sizer's major axis that is not already taken by fixed sized controls and 
spacers. If multiple AddStretchSpacer()s are present, they will divide up 
the available excess room left over from fixed sized controls and spacers equally in 
proportion to their prop= argument values. Example: 

Suppose a vertical BoxSizer is created and the total vertical cliendimension (the 
"extent") is 100 pixels. There will be a single control with an 
.AddStretchSpacer() on either side of that control: 

   1         self.SetClientSize( (123, 100) )
   2 
   3         allCtrls_vertSizer = wx.BoxSizer( wx.VERTICAL )
   4 
   5         allCtrls_vertSizer.AddStretchSpacer( prop=3 )
   6 
   7         allCtrls_vertSizer.Add( caption_stTxt, 
flag=wx.ALIGN_CENTER )
   8         allCtrls_vertSizer.Add( self.listing_txtCtrl, 
flag=wx.ALIGN_CENTER )
   9 
  10         allCtrls_vertSizer.AddStretchSpacer( prop=7 )
  11 
  12         self.SetSizer( allCtrls_vertSizer )
  13         self.Layout()                        # self.Fit()  # always 
use one or the other ** Why? Maybe you don't want to get into this here 
so leave the comment out **

Suppose the TextCtrl's height is 70 pixels. That leaves 30 pixels, total, of "left 
over" client room on the vertical axis to be allocated to the two Stretch spacers. Since 
the proportion argument values are 3 and 7, the 30 pixels of left over space will be 
allocated to the spacers in proportions of 3 : 7, respectively. 

http://wiki.wxpython.org/TextCtrl
http://wiki.wxpython.org/AddStretchSpacer
http://wiki.wxpython.org/BoxSizer
http://wiki.wxpython.org/AddStretchSpacer
http://wiki.wxpython.org/AddStretchSpacer
http://wiki.wxpython.org/AddSpacer
http://wiki.wxpython.org/StaticText
http://wiki.wxpython.org/BoxSizer


Leading Stretch spacer size = (3 / (3 + 7)) * 30 pixels = 9 pixels 

Trailing Stretch spacer size = (7 / (3 + 7)) * 30 pixels = 21 pixels 

This example's proportion argument values are rather bizarre and serve only to help 
clarify how a BoxSizer calculates each Stretch spacer's size. The Stretch spacer 
is much more often used to equally pad both ends of a control or group of controls so 
that the spacing between the edges of the container and the ends of the control(s) 
are equal. This is exactly what is needed for our "simple sizer" demo program: 

** No picture for this one? **

   1         allCtrls_vertSizer = wx.BoxSizer( wx.VERTICAL )
   2 
   3         allCtrls_vertSizer.AddStretchSpacer( prop=1 )
   4 
   5         allCtrls_vertSizer.Add( caption_stTxt, 
flag=wx.ALIGN_CENTER )
   6         allCtrls_vertSizer.Add( self.listing_txtCtrl, 
flag=wx.ALIGN_CENTER )
   7 
   8         allCtrls_vertSizer.AddStretchSpacer( prop=1 )
   9 
  10         self.SetSizer( allCtrls_vertSizer )
  11         self.Layout()                        # self.Fit()  # always 
use one or the other

•  

The great feature of sizers is that they automatically adjust the placements of all their 
controls when the frame is resized for any reason. In the frame shown below the 
controls' centering along the sizer's major axis (vertical) is maintained by the two 
Stretch spacers. The minor axis (horizontal) centering is maintained by the 
flag=wx.ALIGN_CENTER parameters given when each of the two controls were 
.Add()ed to allCtrls_vertSizer: 

http://wiki.wxpython.org/BoxSizer


•  

We've seen some of the most fundamental uses of the BoxSizer: Alignment and 
Spacers. On the next page we'll explore space padding on the controls, themselves, 
rather than inserting spacers between controls. 

Next: BoxSizerFromTheGroundUp/ControlsPadding 

BoxSizerFromTheGroundUp 

BoxSizerFromTheGroundUp/ControlsPadding 

BoxSizerFromTheGroundUp/ControlsResizing 

BoxSizerFromTheGroundUp/NestedBoxSizers 

BoxSizerFromTheGroundUp/DivideAndConquer 

BoxSizerFromTheGroundUp (last edited 2010-09-29 16:49:20 by WinCrazy)

mailto:pascor@verizon.net
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/DivideAndConquer
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/NestedBoxSizers
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/ControlsResizing
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/ControlsPadding
http://wiki.wxpython.org/BoxSizerFromTheGroundUp/ControlsPadding
http://wiki.wxpython.org/BoxSizer

	The wx.BoxSizer
	The flag= Argument
	Minor Axis Positioning flags


